300 research outputs found

    Thalamocortical Connectivity and Microstructural Changes in Congenital and Late Blindness

    Get PDF
    There is ample evidence that the occipital cortex of congenitally blind individuals processes nonvisual information. It remains a debate whether the cross-modal activation of the occipital cortex is mediated through the modulation of preexisting corticocortical projections or the reorganisation of thalamocortical connectivity. Current knowledge on this topic largely stems from anatomical studies in animal models. The aim of this study was to test whether purported changes in thalamocortical connectivity in blindness can be revealed by tractography based on diffusion-weighted magnetic resonance imaging. To assess the thalamocortical network, we used a clustering method based on the thalamic white matter projections towards predefined cortical regions. Five thalamic clusters were obtained in each group representing their cortical projections. Although we did not find differences in the thalamocortical network between congenitally blind individuals, late blind individuals, and normal sighted controls, diffusion tensor imaging (DTI) indices revealed significant microstructural changes within thalamic clusters of both blind groups. Furthermore, we find a significant decrease in fractional anisotropy (FA) in occipital and temporal thalamocortical projections in both blind groups that were not captured at the network level. This suggests that plastic microstructural changes have taken place, but not in a degree to be reflected in the tractography-based thalamocortical network

    Aberrant neural signatures of decision-making:Pathological gamblers display cortico-striatal hypersensitivity to extreme gambles

    Get PDF
    AbstractPathological gambling is an addictive disorder characterized by an irresistible urge to gamble despite severe consequences. One of the hallmarks of pathological gambling is maladaptive and highly risky decision-making, which has been linked to dysregulation of reward-related brain regions such as the ventral striatum. However, previous studies have produced contradictory results regarding the implication of this network, revealing either hypo- or hypersensitivity to monetary gains and losses. One possible explanation is that the gambling brain might be misrepresenting the benefits and costs when weighting the potential outcomes, and not the gains and losses per se. To address this issue, we investigated whether pathological gambling is associated with abnormal brain activity during decisions that weight the utility of possible gains against possible losses. Pathological gamblers and healthy human subjects underwent functional magnetic resonance imaging while they accepted or rejected mixed gain/loss gambles with fifty–fifty chances of winning or losing. Contrary to healthy individuals, gamblers showed a U-shaped response profile reflecting hypersensitivity to the most appetitive and most aversive bets in an executive cortico-striatal network including the dorsolateral prefrontal cortex and caudate nucleus. This network is concerned with the evaluation of action–outcome contingencies, monitoring recent actions and anticipating their consequences. The dysregulation of this specific network, especially for extreme bets with large potentials consequences, offers a novel understanding of the neural basis of pathological gambling in terms of deficient associations between gambling actions and their financial impact

    Abnormal plasticity of sensorimotor circuits extends beyond the affected body part in focal dystonia

    Get PDF
    Objective: To test whether abnormal sensorimotor plasticity in focal hand dystonia is a primary abnormality or is merely a consequence of the dystonic posture. Methods: This study used the paired associative stimulation (PAS) paradigm, an experimental intervention, capable of producing long term potentiation (LTP) like changes in the sensorimotor system in humans. PAS involves transcranial magnetic stimulation combined with median nerve stimulation. 10 patients with cranial and cervical dystonia, who showed no dystonic symptoms in the hand, and nine patients with hemifacial spasm (HFS), a non-dystonic condition, were compared with 10 healthy age matched controls. Motor evoked potential amplitudes and cortical silent period (CSP) duration were measured at baseline before PAS and for up to 60 min (T0, T30 and T60) after PAS in the abductor pollicis brevis and the first dorsal interosseus muscles. Results: Patients with dystonia showed a stronger increase in corticospinal excitability than healthy controls and patients with HFS. In addition, patients with dystonia showed a loss of topographical specificity of PAS induced effects, with a facilitation in both the median and ulnar innervated muscles. While PAS conditioning led to a prolonged CSP in healthy controls and patients with HFS, it had no effect on the duration of the CSP in patients with cranial and cervical dystonia. Conclusion: The data suggests that excessive motor cortex plasticity is not restricted to the circuits clinically affected by dystonia but generalises across the entire sensorimotor system, possibly representing an endophenotypic trait of the disease

    Volumetric measurements of weak current-induced magnetic fields in the human brain at high resolution

    Get PDF
    PURPOSE Clinical use of transcranial electrical stimulation (TES) requires accurate knowledge of the injected current distribution in the brain. MR current density imaging (MRCDI) uses measurements of the TES-induced magnetic fields to provide this information. However, sufficient sensitivity and image quality in humans in vivo has only been documented for single-slice imaging. METHODS A recently developed, optimally spoiled, acquisition-weighted, gradient echo-based 2D-MRCDI method has now been advanced for volume coverage with densely or sparsely distributed slices: The 3D rectilinear sampling (3D-DENSE) and simultaneous multislice acquisition (SMS-SPARSE) were optimized and verified by cable-loop experiments and tested with 1-mA TES experiments for two common electrode montages. RESULTS Comparisons between the volumetric methods against the 2D-MRCDI showed that relatively long acquisition times of 3D-DENSE using a single slab with six slices hindered the expected sensitivity improvement in the current-induced field measurements but improved sensitivity by 61% in the Laplacian of the field, on which some MRCDI reconstruction methods rely. Also, SMS-SPARSE acquisition of three slices, with a factor 2 CAIPIRINHA (controlled aliasing in parallel imaging results in higher acceleration) acceleration, performed best against the 2D-MRCDI with sensitivity improvements for the and Laplacian noise floors of 56% and 78% (baseline without current flow) as well as 43% and 55% (current injection into head). SMS-SPARSE reached a sensitivity of 67 pT for three distant slices at 2 × 2 × 3 mm3^{3} resolution in 10 min of total scan time, and consistently improved image quality. CONCLUSION Volumetric MRCDI measurements with high sensitivity and image quality are well suited to characterize the TES field distribution in the human brain

    Ergodicity-breaking reveals time optimal decision making in humans

    Get PDF
    Ergodicity describes an equivalence between the expectation value and the time average of observables. Applied to human behaviour, ergodic theories of decision-making reveal how individuals should tolerate risk in different environments. To optimise wealth over time, agents should adapt their utility function according to the dynamical setting they face. Linear utility is optimal for additive dynamics, whereas logarithmic utility is optimal for multiplicative dynamics. Whether humans approximate time optimal behavior across different dynamics is unknown. Here we compare the effects of additive versus multiplicative gamble dynamics on risky choice. We show that utility functions are modulated by gamble dynamics in ways not explained by prevailing decision theory. Instead, as predicted by time optimality, risk aversion increases under multiplicative dynamics, distributing close to the values that maximise the time average growth of wealth. We suggest that our findings motivate a need for explicitly grounding theories of decision-making on ergodic considerations.Comment: 43 pages including supplementary methods & material

    Managed aquifer recharge with reverse-osmosis desalinated seawater: modeling the spreading in groundwater using stable water isotopes

    Get PDF
    The spreading of reverse-osmosis desalinated seawater (DSW) in the Israeli coastal aquifer was studied using groundwater modeling and stable water isotopes as tracers. The DSW produced at the Hadera seawater reverse-osmosis (SWRO) desalination plant is recharged into the aquifer through an infiltration pond at the managed aquifer recharge (MAR) site of Menashe, Israel. The distinct difference in isotope composition between DSW (δ18O&thinsp; = &thinsp;1.41&thinsp;‰; δ2H&thinsp; = &thinsp;11.34&thinsp;‰) and the natural groundwater (δ18O&thinsp; = &thinsp;−4.48&thinsp;‰ to −5.43&thinsp;‰; δ2H&thinsp; = &thinsp;−18.41&thinsp;‰ to −22.68&thinsp;‰) makes the water isotopes preferable for use as a tracer compared to widely used chemical tracers, such as chloride. Moreover, this distinct difference can be used to simplify the system to a binary mixture of two end-members: desalinated seawater and groundwater. This approach is validated through a sensitivity analysis, and it is especially robust when spatial data of stable water isotopes in the aquifer are scarce. A calibrated groundwater flow and transport model was used to predict the DSW plume distribution in the aquifer after 50 years of MAR with DSW. The results suggest that after 50 years, 94&thinsp;% of the recharged DSW was recovered by the production wells at the Menashe MAR site. The presented methodology is useful for predicting the distribution of reverse-osmosis desalinated seawater in various downstream groundwater systems.</p

    The role of high-field magnetic resonance imaging in parkinsonian disorders:Pushing the boundaries forward

    Get PDF
    Historically, magnetic resonance imaging (MRI) has contributed little to the study of Parkinson's disease (PD), but modern MRI approaches have unveiled several complementary markers that are useful for research and clinical applications. Iron- and neuromelanin-sensitive MRI detect qualitative changes in the substantia nigra. Quantitative MRI markers can be derived from diffusion weighted and iron-sensitive imaging or volumetry. Functional brain alterations at rest or during task performance have been captured with functional and arterial spin labeling perfusion MRI. These markers are useful for the diagnosis of PD and atypical parkinsonism, to track disease progression from the premotor stages of these diseases and to better understand the neurobiological basis of clinical deficits. A current research goal using MRI is to generate time-dependent models of the evolution of PD biomarkers that can help understand neurodegeneration and provide reliable markers for therapeutic trials. This article reviews recent advances in MRI biomarker research at high-field (3T) and ultra high field-imaging (7T) in PD and atypical parkinsonism. © 2017 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society
    • …
    corecore